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ABSTRACT 

The electric and the magnetic dipole moments are calculated for the 

bound states of a charged Dirac particle of spin $ with an extra magnetic 

moment in the field of a fixed magnetic monopole. Unlike ordinary bound 

systems with P and/or T invariance, this system, lacking both, is found 

to possess a non-vanishing electric dipole moment. Its magnitude for the 

loosely bound states with the lowest possible angular momentum increases 

exponentially in the principal quantum number n. The magnetic moment of 

the system is found to be, in general, non-vanishing. 
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I. INTRODUCTION 

Recently it was found is2 that bound states for a charged Dirac particle 

with an extra magnetic moment in the field of a fixed magnetic monopole 

exist. The results may be summarized as follows3: 

(i) For each possible value of the total angular momentum j = [q 1 - i, 

191 ++, 1 qj +3/z, . ..> there exists a non-degenerate tightly bound state 

with E = 0 for any non-vanishing K. Moreover, for the lowest angular momentum 

state (j = 141 - f I, K - 0 limit still yields a bound state for this energy. 

(ii)Forthestatewithj = lq/ -4, th ere exist countably infinite number 

of bound states if K [q 1 > +. The energy spectrum is symmetric about E = 0 

and not bounded either from above or from below. If the above condition is 

not satisfied, there are no bound states with E C 0. 

As regards the system of a charged particle and a magnetic monopole, 

it has long been known that it violates the discrete symmetries 
4 

P and T. 

This is simply due to the fact that the magnetic field of the monopole, ~gg/-r3, 

has the “wrong” transformation property under P and T, unless one changes 

the sign of g by hand. 

This exceptional feature of the system makes one suspect that the bound 

states previously found may possess electric dipole moments, which are 

strictly forbidden for ordinary systems with P and/or T invariance. 

In this paper, we shall confirm this intriguing conjecture and give explicit 

expressions for the electric dipole moments of the bound states. The magnetic 

dipole moments, in general non-vanishing, are also computed. 
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II. TWO TYPES OF BOUND STATES--A SHORT REVIEW 

In this section, we shall give a brief review of the two types of bound 

states found in Ref. 1 and set the notations. 

The Hamiltonian of the system is 

H = z. (p’ - ex) + PM - kqp; * ;,(2n~-~)-~ (1) 

with the usual definitions of ;Y’, l3, and c matrices. To avoid the singularity 

in the potential A, the wave function JI should be considered as a section. 5 

The system possesses the conserved total angular momentum J given by 

J’ : gx(g-&)-qr^++TT , (2) 

where r^ is the unit vector pointing to the electron from the monopole at the 

origin. The magnitude j of this angular momentum takes the values 

j= lqI-$, IsI++, 191 +3/2, . . . ~ There are6 two two-component 

angular eigenfunctions &i ) 
Jm 

and c!2). 
3m 

lfj > j min = lq[ - *, andonlyone, 

r) m, if j = jmin. For later purposes, we exhibit their specifi~cforms. 

t!j’ 

;!I 

and 5!2’ are obtained from the “familiar” two-component eigenfunctions 

and iy2’ 
s= Jm 

(see below) by a rotatiommthe space of the two-component 

spinors as follows: 

p = ~0s E cj!I’ - sin Cy f$!2’ 
Jm 2 Jm 2Jm ’ 

5!2’ = sin “4 Ii’ + COS y I$!2’ 
Jm 2 Am 2jm ’ 

(3) 
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where 01 is given by 

sina = 
J+F 

cos.-[i ] 
-L- 

2 

’ - (j + +)2 

- T1/2 5 Ly 5 Tilz 

and 4!1)and $11~) are composed of the monopole harmonics 3Y 
w 3m q,1,m (q = O 

gives the ordinary spherical harmonics ) 

$!I) _ EF yq. 

Jm - 

i J- 

.e 

2j , 
Yq; 

. 1 J-r.m- 

p = 

[ 

pyyy Yq, j;f;;ni* 
~, ir ! 

Jm 

1 k/T ‘q,j++,m++ ’ 

‘Im is defined by 

-J! 91+$-m 
2q +1 

Y 
9. 

Y 
9. 

(4) 

(5) 

qlJ m-+ 

1 . (6) 

4 ’ m+i 

The following property’ of ‘)m will prove useful later 

G * $)rjm = 
7-l q’m ’ (7) 
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Using these angular eigenfunctions, we can construct two types of 

eigenfunctions of J’, Jz and H: 

Type A. j’lql++ , 

Type B. j = 
141 - 4 

The radial equation for type A is 

-a, +A r-i 0 2 -i 
wq(2Mr ) M+E 

0 -a, -xr+ M+E 2 -1 
~q~~~ ) 

2 -1 
Kq(2Mr ) M-E -al- +x r-l 0 

M-E q(2Mr2j1 0 -4 
-a, - h.r - 

where 

C 1 

z 
A G (j + + )2 - q2 

(8) 

(8) 

hl 
h2 

K 

7-I 

= 0 (10) 

KQ h3 
* 

-TT -4 h4 - 

(11) 

The boundary condition for bound states is that hi(r) (i = I, 2, 3, 4) vanish 

at bothr =Oandr =Q. In general this is a complicated eigenvalue problem 
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and the full spectrum has not been obtained. However for E = 0 Eq. (8) 

decouples into two identical sets of two-component equations, which can be 

solved exactly to give a bound state with wave functions (up to an overall 

constant ), 

hi =-h3 = Eexpl-s[Kx-+(Mr) , 

h2 = -h4 = -%&exp/-%[ Kx++(Mr) . (12) 

K”(x) here is the familiar modified Bessel function of order V. This bound 

state is non-degenerate. w:-O limit does not give a bound state since then 

the singularity at the origin of the K function makes the solution unnormalizable. 

For type B states the radial equation is 

dF 
z = +E+W3 1 G 

$-‘E - M) - 21 F 

Upon substitutim 

(13) 

(14) 

(13) simplifies to 
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dF _ = (A+B- 
dp 

-$)G , 
P 

dG 
-6;; 

= (A-B- + 
P 

(15) 

This set of equations, although not soluble in closed form in general, was 

analized in Ref. 1 and countably infinite bound states were found as mentioned 

in the introduction. Again E = 0 (i.e. B = 0 in (15)) is a special case for 

which bound state radial functions may be explicitly exhibited. They are, 

up to an overall constant, 

F = -G = I 
_ .,.!ds. Mr 

2Mr I 
(16) 

III. ELECTRIC DIPOLE MOMENT OF THE BOUND STATES 

Having summarized the necessary ingredients, we shall now compute 

the electric dipole moment of the bound states discussed above. 

Electric dipole moment operator for the system is given, as usual, 

by 

d’ = eg . (17) 

By the angular momentum conservation, the only non-vanishing component 

of d for a state with definite angular momentum is the z-rcomponent 



-8- FERMILAB-Pub-77/ 59-THY 

<d>. = / d3r+“jme zGjrn/ / d3r+“jm$jm . 
2 Jm 

We shall first compute this for the simpler of the two types of states, 

i.e. for the type B bound states, somewhat in detail since the calculation 

for the type A states as well as the evaluation of the magnetic dipole moment 

in the following section requires only more involved algebra of the same kind. 

1. Type B bound states 

Substituting (9) into (18) we get (omitting the subscript j) 

+ 
<d > cos 0 dS2 r(F2 + G’)dr/ 

zm 
=e q 

/ m’lm / 
om(F2 + G’)dr. 

The azimuthal quantum number dependence may be extracted from the 

<jm/ cos;J I@> = <jj / cos 01 jj> C (jm/ 10 jm)/C(jj 

= F<jjIcos Oljj> , 

Wigner-Eckart theorem. I.e. , 

110 jj) 

(19 ) 

(7-O) 

where C(jm Ijimij2m2) is the Clebsch-Gordan coefficients and we have used 

C(jm 110 jm) = -m . 

For j = m = 1 q 1 - i, the two-component eigenfunction n takes the form m 

&jig%, 

[ 

IqI, Iql -i 
n I91 _ + = 

’ J$SkL [cl,> ,q, I 

(21) 
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while cos 0 is conveniently expressed in terms of an ordinary spherical 

harmonics, which, in our notation, is 

cos e = d-GE YOIO . (22) 

Thus, with (21) and (22), the reduced angular integral becomes 

/ Q~+~~COS e d Q = &Gp(2lql +I)-? 
y;, Iq[, b I- y 1 oloyq, p 1, 19 I-1 

::: 

+21q~yq,lqj,[q(yo~oyq~ Isl9lql (23) 

The integral of the triple product of monopole harmonics can be computed 

3 

using the following properties ’ of monopole harmonics: 

::: 
Y 

q,P,m 
= (-1)q +my 

-q,P,-m ’ 

i 
Y 

q, P , mYq’, P ‘, mtYq”, 1 ‘I, m” dR 

(24) 

= 
C 

(21 + 1)(2J?’ + Il(2f” + 1) 
4ll Lfd, ;::)(; “q: “d:,) (-i)P+P’+e”, (25) 

where the quantity expressed by the round bracket is the Wiger 3j symbol. 

Thus (23) becomes 
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I rjj+lJjCOS e dR 

’ I( ! q’, 19 - 1 1 -jq/ 0 lql ‘j- 4q/(ll;;p;lJ,; j/ 

Finally the explicit evaluation of the 3j symbols yields 

/ 
qj+qjcos e d n = (27) 

Combining (i9), (ZO), and (271, we obtain 

m 
<d > 

zm 
= - -,!&,~g e (F2 + G2)rdr/ om 

s 
(F2 + G’)dr . (28) 

Before we discuss the radial integrals appearing in (281, it is worth 

pointing out that the kinematical factor obtained above may be understood by 

the following simple argument. 

Since the only available vector characterizing the system is the total 

angular momentum 7, the dipole moment d’ must be parallel to J’ with a 

constant of proportionality y. y may not depend on m. To obtain y. we form 

d2 in two different ways: 

d2 = ;.yy = ye r’ * J’ > 

d2 = y2J2 . 

(29a) 

(29b) 

From this we obtain 
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These operator manipulations are valid if we deal with their simultaneous 

eigenstates, for which they are c-numbers. The type B states are just such 

states since, from (2), 

r’. J’ = r(-q +$lT’. ?, (31) 

and n m is an eigenstate of u +. r^ with the eigenvalue q/ /q /. Thus for such 

states, the kinematical factor for dZ takes the form 

em 
j(j + ,)w-l + + & ) 

which, with j = I q I - +, is precisely 

Let us now discuss the radial integrals for the E = 0 and E # 0 bound 

states separately. 

Type B, E = 0 state 

For this case the radial functions are explicitly given by (16). The 

two integrals to be computed are 

(F2 + G2)dr = -&-mr dr , 
I 

(32) 



-12- FERMILAB-Pub-771 59-THY 

s 
a3 

I2 : (F2 + G2)rdr = - E - mr rdr . 
! 

(33) 
0 

They are easily evaluated and give the ratio 

1,114 = k K2(2dT()/ Ki (N-j-, . (34) 

Thus, for this state, the complete expression for the electric dipole moment 

becomes 

Cd,> = 
zm K2(2~~)/Ki(2d~[) . (35) 

From the asymptotic form of the K functions, large and small I kq [ limits 

are easily obtained: 

<dz>m i”g/-fi+; &(A +4/kqIln~& +...) , (36) 

(37) 

In words, as /~q I approaches’zero, the relative contribution from around 

the origin increases due to the increase of the factor exp - kq 
(1 1 

(2Mr) 4 
> 

and the dipole moment decreases in magnitude to a non-vanishing value of 

-h 1 q 1 )m( 1q 1 + 4 )-‘el GM). On the other hand, as Ikq I becomes large, 

the major contribution comes further and further away from the origin and the 

moment increases in magnitude indefinitely like / kq If . 



-13- FERMILAB-Pub-771 59-THY 

T,ype B, E # 0 states 

For these states, unfortunately it is difficult to obtain the radial functions 

even in an approximate manner. In Ref. 1 only the energy levels were obtained 

for several asymptotic cases. 

It turns out, however, that the dominant term can be computed in the 

limit of very loosely bound states with fixed [ ~~41 without recourse to the 

full wave functions. This is the most interesting limit as one expects a large 

moment for such large (in size) bound states. 

Since the energy levels are symmetric about E = 0, we shall concentrate 

on the positive energy bound states labeled by a positive integer n such that 

o<Ei<EZ<... <E <... <M 
n . (38) 

It was found in Ref. 1 that for large n, with [ Kq 1 fixed, 

E 
1-G - const. 

exp- (4 4yKZ, - 1) 

where the constant in front is of order unity. 

Our aim is to compute 

/ 

m 

I 

m 

<r> z (F’ + G2jrdr/ (F2 + G2)dr 
0 0 

inthelimitn+m, i.e., E +M. n For this purpose, it is convenient to 

employ the substitution defined in (14). Then we have 

(39 ) 

(40) 

<r> = +$-.p> (41) 
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<p> f r (F2 + G2)pdp/ 
0 J 

m 
(F2 + G2)dp (42) 

0 

is dimensionless. In terms of the dimensionless positive parameters A and 

B in (14), the large-n limit corresponds to the limit B * A. 

Let u G F + G and v E F - G. Then Eq. (15) becomes 

du _ 
dp 

(A-+@-Bv , 
P 

(43) 

dv 
;i;;= 

- (A - + hr+Bu . 
P 

Now fix a number R >> A-- : and consider the region where p 2 R. For such 

a region, I/ p2 may be neglected compared with A and we readily find 

FQ$(l+$+[(~J2-;]‘)exp(-~~p) , (44a) 

“..g(1-~-[(~)2-i]~)e~~(-JAZ-~pj . (44b) 

Thus for large p the wavetinction describes simply an exponential tail, which 

becomes longer andlonger as B approaches A. Moreover notice that, in 

this limit, G is negligible compared with F. 

We shall now normalize the radial functions such that 

P 
(F2 t G’)dp = 1 , 

0 
(45) 
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and consider 

k =: E P(F2 + G2)dp , 

where 

E = 2%./x-3 = ,Kq,c-@ 

(46) 

(47 ) 

k may be split into two terms: 

/ 

m 

i 

R 

k = E p(F2 + G’)dp + E p(F2 + G’kip . (48) 

R 0 

The second term is, by virtue of (45), at most of order ER. For the first 

term we may use (44) in the form 

F = fe -<p/2 

G = ge -ep/2 

f, g = const. 

Then, k can be written as 

k = - 2 d 
P(f2 +g )-ee-EPdP+ I 

dp 
, 

which upon integration by parts becomes 

/ 

co 

(F2 + G2)dp t R(F2 + G’)(R) + @(CR) . 
R 

(49 1 

(50) 
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To estimate (F’ + G2)(R), note, from (45) and (49), 

12 (F2 + G2)dp 

*aI 

= (F2 + G2)(R)eER 
J 

e-’ ‘dp 
R 

= (F2 + G2)(R)/e . 

Thus R(F2 + G2)(R) 5 ER. Therefore we obtain 

k = 
lo 

(F2 t G2)dp + 0(2eR) . 
R 

passing to the limit E + 0 (i. e. B +A), we find 

lim k 
B-A 

. (51) 

This means that in this limit, the contribution is entirely due to the long tail. 

But in such a case we may explicitly compute < p> . I. e. , 

<p, = ~pe-‘pdp/ Le-e’dp = $ +R . (52) 

An alternative form is, by multiplying by E, 

lim k 
B+A 

(F2 +G2)dp = 1 . (53) 

Combining (39), (44), (47), and (51), we finally obtain the leading term for 

<I‘> in the limit n- m to be 



-17- FERMILAB-Pub-77/ 59-THY 

<r> w 1 
n-m 

const. 2~ =+=$!+T) ) (54) 

where the constant is of order 1. It is interesting to compare this expression 

of the mean radius with that for a hydrogen atom. For the latter, neglecting 

relativistic corrections, <r> is given by 

<I-> =+ 3n2 C - P(P +I) 1 . 
Thus there exists a sharp contrast between these two types of binding. 

2. Type A bound states 

The evaluation proceeds in a similar manner. Upon substituting the 

form (8) into (18) with the definitions of (1) sm and 5 iz given by (3 ), (4 1, and 

(5), one obtains, after some algebra, the following expression for the electric 

dipole moment. 

<d>. =- mq z Jm j(j t 1) e(cu+TiYJ *P) , 

with 
m 

1 Ly=- N d drr([hi12 + /h2j2 + lh312 + /h412 ) 9 

I 

co 
p + 

i:i ” :1( iii 
drr(hf h2+h2 hi +h3 h4+h4 h3) J 

0 
m 

where N = d.r(lhl12 + lh2i2 + lh3j2 + lh,j’) . 

(55) 

For the only known type A bound state, with E = 0, the radial integrals 

take the form (see Eq. (12)): 
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P = $llrrexP (-$$-) KA++(Mr)Kx-+(W) , (56b) 

with 

N = iadrexP (-$$-)I/ICh++WrI]2+(KX- bCMr])2/ . (56~) 

When A (defined in (11)) takes an integer value, for example for 

(A, j, q) = (2, 2, 3/2), (4, 8, 15/2), etc., these integrals can be 

explicitly evaluated in closed forms. One obtains 

2x 
1 1 cy = En/r 

Iv 
fX(P)+fX- ,(I) z 1 1 - lK J, - ,(Z) =o I 

2x-2 
p = 6 & 1 I [ fX 

e =o 

(1) +fX- &+’ - ‘Ke _ ,(z) 

t 2 [,2X- q!yz’ - 2kZA- ,(Z) 

with 

2x 

f,!f) +fA- 1 (a 1 
I 

Z-‘Kp (Zl 

and fX(P ) is a number defined by 

(57a) 

(57b) 

(57c) 

f,(a) E I!2 -! f: (“,)(“:“,(“-y’) . 
k=O 
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In the asymptotic region of small and large / kq / , LY and p behave like 

iy Iaqr*O2M X-l 
1IKqIZ2) ) 

P I WY* 0 i4 & A_““, 2 (A 23) , 

(58 ) 

(59) 

independent of A . (60) 

Notice that the moment vanishes as 1 kq 1 -f 0 in contrast with the type 

B bound state with E = 0 described before. This is due to the divergent 

character of the K function at the origin. AS 1 kq 1 becomes small, the factor 

exp (- Ikq j(ZMr)-l) in the wavefunction which suppresses the divergence 

becomes weaker and the probability density becomes highly concentrated 

around the origin. Hence the vanishing of the moment in this limit. 

On the other hand, for large 1 kq 1 , the same factor wipes out all the 

order-dependent part of KV(x), leaving only the exponential tail, common to 

all orders, as the sole contributor to the moment. 
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IV. MAGNETIC DIPOLE MOMENT OF THE BOUND STATES 

Magnetic moment operator of the system is given by 

e- + 
po=~rx” , (61) 

One can easily verify that go and z1 are both axial vector operators even under 

the presence of the monopole. Thus, again pz is the only non-vanishing 

component. 

The evaluations of uoz and plz are similar to those of the electric 

dipole moment. We shall quote only the results and discuss their salient 

features. 

Type B states: 

<l-r Oz’m 
= 0 

m a, 

‘P Iz’m = 
- sfi (F2 - G2)dr/ (F2 + G2)dr 

Type A states: 

a 

<P 
Oz>jm = % j(j yi, rdr(hl h4 “’ - h2”‘h3)/N 

(62) 

(63) 

(64) 
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<F Iz’jm 
Ke m 

= 2M j(j + 1) ($ +V(/hi12 - Ih3j2) 

+ ($ - A)( / h2 1 2 - 1 h4/ 2;)+ 21 q[ Imdr(hl+h2 - h3”h4) 

0 

(65) 

where N is defined in (55). 

1. First, notice that for E = 0 bound states (both type A and type B), 

magnetic dipole moment vanishes identically since the integrands all vanish 

(see (12) and (16)). This is due to the property of these states under “charge 

conjugation” operation defined by 

C = y2K , 

where K is the complex conjugation operator. This unitary operation is not - 

a symmetry of the Hamiltonian. Indeed one finds 

CHC+ = -H . 

By direct calculation, magnetic moment operator is found to change sign 

under this operation, i. e., 

Now observe that if + is a state with E = 0, C+ is also an eigenstate with 

E = 0, since 

HC$ = - C+H$ = 0 . 
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Non-degeneracy of the E = 0 bound state foreach j then dictates that C$ 

and 4 differ at most by a constant phase factor 5 . Thus 

<q&p = ‘qp;c+pqJ> 

2. Next the vanishing of i. for the type B states (62) may be understood 

as follows. Since there exists only one two-component angular eigensection 

nm 
for j = /q 1 - 4, the two cross terms produced by the matrix Q in co 

+ 
have the identical angular structure, i. e. , n m(s x zkj m’ Recall that 

nm 
is an eigenfunction of 0 + * ? with the eigen value c$ q 1 . It is easily checked 

that g . r” anticommutes with $X o *. Therefore ;. must vanish for the type 

B bound states. 

3. Can we estimate plz for weakly bound type B states? As was discussed 

in the previous section, in the limit of large n the contribution to the 

normalization integral is dominated entirely by the exponential tail of the wave 

functions, for which lim G2/F2 = 0. Therefore the ratio of the integrals 
.n- 0) 

in (63 1 approaches 1 in this limit and one obtains the result: in the limit 

of very loosely bound states with j = Iq I - f, the magnetic moment of the 

system approaches a value proportional to the extra magnetic moment of the 

charged particle 

lim <pz> = - 
nw 

*%i * (66) 
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V. SUMMARY 

The violation of both parity and time reversal invariance for the system 

of a charged Dirac particle, with an extra magnetic moment ke/2M, bound 

in the field of a fixed magnetic monopole allows it to have a non-vanishing 

electric dipole moment. 

For the bound states with E = 0, the moment was evaluated using the 

explicit wave functions available for these states. It was found that for all 

these states the moment increases like 1 Kq I ’ as ( Kq 1 tends to infinity, 

while in the small Ikq ( limit the moment vanishes. An exception occurs for 

the state with the lowest angular momentum, for which K - 0 limit still yields 

a bound state. For this state the moment approaches a finite value as Ikq 1 

tends to zero. 

For the infinite number of bound states with j = jmin, E = En f 0, 

for which the wave fuactions are not known, the leading term for the electric 

dipole moment was obtained in the weak-binding (i. e. large n) limit by,relating 

it to the corresponding asymptotic energy spectrum of the system. The 

moment is found to increase in its magnitude exponentially in the principal 

quantum number n. 

The magnetic dipole moment was evaluated for these bound states in a 

similar manner. Due to the special property under the charge conjugation 

operation the magnetic moment vanishes identically for the states with E = 0. 

For the case of loosely bound states with j = jmin mentioned above, the magnetic 

moment approaches a finite limiting value proportional to the extra magnetic 

moment of the charged particle as n + m. 
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The results summarized above would undoubtedly be subject to 

quantum electrodynamical (QED) corrections. Lacking a consistent 

theory of QED with monopoles, however, the assessment of the nature 

and the degree of modification is difficult at the moment. 
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lexp{- (;+br$(--) +b)dr 

= - exp _ (a+ br) 
I- > 

0 

= 0 

Thus 

b laeq {- (;+br))dr = a %exp (- (F+br))F * 

Differentiating both sides twice with respect to b, we obtain a differential 

equation 

d2 - 
db2 

(bIf = a1 

By a change of variables 

*=2&i? , 

y = XI 

it assumes the form 

(A. 3) 

(A.4) 

(A. 5) 

d21d 1 - +-- - *+- y = ( )I 0 
dx2 

xdx 2 
x 
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This is a familiar equation for the modified Bessel functions of order +i. 

Since the original integral vanishes in the limit of large a and b, we must 

choose the Kf function. Thus we obtain 

I = const. b 

To fix the constant, we shall appeal to the a + 0 limit. In this limit, 

J 

m 

I = exp (-br )dr = b 
-1 

0 

This gives the result 

I = 2(a/b)‘Ki(Za) . (A. 6) 

Differentiating this with respect to a or b In 1 times and repeatedly 

applying the recurrence relations 

we arrive at 

x- “$(x”KV) = -.KV- 1 

vd X ;i;;(“-vK ) = -K 
” V+l 

n+i 

I(n) = Us/b) 2 K, + ,(Zm) (A. 7) 

valid for any integer n. Eq. (34) in the text follows from this immediately. 

2. As stated in the text, the radial integrals in (561 involving the product 

of two K functions and an exponential factor can be computed in closed forms 
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for A = (j + + I2 - q 2 1 + =. mteger. This is easily seen from the fact that K 

functions of half-integral order has a simple representation 

n 

K n+‘(x) = (n/2x)’ esx 1 L (n+a)! x-P 
h - 1 I! (A.8) 

2 
e z. Pn! 

Therefore each term of the integrands of (64), when expanded into a finite 

series using (A. 8), is precisely of the form (A. 7). Working out the algebra, 

one obtains the results quoted in the text. 


